Chemical Science Pick of the Week! (01/03/2024)
We’re thrilled to announce that our recent work “Designing solvent systems in chemical processes using self-evolving solubility databases and graph neural networks” is not only part of the “2024 Chemical Science HOT Article Collection” but also selected as the “ChemSci Pick of the Week“.
Yeonjoon, Hojin, and Sabari in Prof. Kim Group and Prof. Paton had their work regarding the graph neural networks for solubility prediction accepted for publication in Chemical Science. This work reconciles the different magnitudes of error and uncertainties of experimental and computational databases of solubility through semi-supervised distillation (SSD) scheme using graph neural network model for solubility prediction. This approach led to the maximization of the database size and model’s prediction accuracy, and applied to two practical examples of solvent design: (1) solvation free energy vs. reaction rates, (2) log P prediction of lignin-derived monomers and drug-like molecules.
To learn more about this work, Click Here